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Abstract

We construct a Fourier–Mukai transform for smooth complex vector bundlesE over a torus
bundleπ : M → B, the vector bundles being endowed with various structures of increasing
complexity. At a minimum, we consider vector bundlesE with a flat partial unitary connection, that
is families or deformations of flat vector bundles (or unitary local systems) on the torusT . This leads
to a correspondence between such objects onM and relative skyscraper sheavesS supported on a
spectral coveringΣ ↪→ M̂, whereπ̂ : M̂ → B is the flat dual fiber bundle. Additional structures on
(E,∇) (flatness, anti-self-duality) will be reflected by corresponding data on the transform(S,Σ).
Several variations of this construction will be presented, emphasizing the aspects of foliation theory
which enter into this picture.
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1. Introduction

The construction nowadays known as theFourier–Mukai transformfirst appeared in a
seminal work by Mukai[11], where it was shown that the derived categories of sheaves on
an abelian variety (e.g. a complex torus) is equivalent to the derived category of coherent
sheaves on thedualabelian variety.
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Since then, the Fourier–Mukai transform has been generalized in different ways, and has
led to a number of interesting results concerning not only the derived categories of coherent
sheaves, but also the moduli spaces of stable sheaves on abelian varieties, K3 surfaces and
elliptic surfaces.

This paper draws on two types of generalization of Mukai’s original ideas. First, one
can considerfamiliesof abelian varieties, and define a transform that takes (complexes of)
sheaves on a family of abelian varieties to (complexes of) sheaves on the correspondingdual
family. This has been applied with great success to the study of stable sheaves on elliptic
surfaces (i.e. holomorphic families of elliptic curves parametrized by an algebraic curve),
see for instance[2] and the references there. In particular, given an elliptic surfaceX, it can
be shown that there exists a 1–1 correspondence between vector bundles onX which are
stable with respect to some suitable polarization, and certain torsion sheaves (spectral data)
on the relative Jacobian surface (see[6,7] for details).

On the other hand, Mukai’s construction can be generalized from complex tori toreal tori.
Such a generalization, first considered by Arinkin and Polishchuk in[1] is briefly described
in Section 2.

Building on previous work by Arinkin and Polishchuk[1] and by Bruzzo et al.[3,4],
we consider in this paper a Fourier–Mukai transform for vector bundles with (partial)
connections on families of real tori. Rather than restricting ourselves to flat connections
on Lagrangianfamilies of real tori as in[1,4], we study a broader class of connections on
vector bundles over a (not necessarily symplectic) manifoldM with the structure of aflat
torus bundle.

After briefly reviewing the Fourier–Mukai transform for real tori, following[3], we start
in Section 3by defining a Fourier–Mukai transform forfoliated bundles, which in our
context can be viewed asfamilies of flat bundleson the fibers of the torus bundleM → B.
This takes foliated Hermitian vector bundles overM into certain torsion sheaves on the dual
fibrationM̂ → B. We then introduce the concept ofPoincaré basic connectionsin Section 4,
and extend our construction to include vector bundles provided with such connections. We
then conclude inSection 5by applying our techniques to three different examples: flat
connections, that is unitary local systems, instantons on 4-dimensional circle fibrations,
and monopoles on 3-dimensional circle fibrations.

It is a somewhat surprising fact that certain concepts and techniques from foliation theory
occur quite naturally in the context of the Fourier–Mukai transform. Besides the notions of
foliated bundle and Poincaré basic connection which refer to the torus fibration, that is to
a foliation which is rather trivial from the point of view of foliation theory, there is also a
canonical foliation on the dual fibration̂M → B, transverse to the fibers which has a more
complicated structure. For locally trivial families of flat bundles on the fibers of the torus
bundleM → B, it turns out that the supportsΣ ↪→ M̂ of the Fourier–Mukai transform are
(finite unions of) leaves of this transverse foliation. This allows us to give inSection 5.1an
explicit parametrization of the representation varietyRM(n) of M in terms of leaves with
transversal holonomy of order such that|n.

The main motivation behind[1] and[3,4] comes from string theory and the Strominger–
Yau–Zaslow approach to mirror symmetry, with the main goal of understanding Kontsevich’s
homological mirror symmetry conjecture. In a sense, the two main results here presented
may also be relevant to the understanding of Kontsevich’s conjecture. Although it seems
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reasonable to expect that the ideas explored in this paper might provide some interesting
connections with String Theory and mirror symmetry, we do not elaborate on them, leaving
such a task to mathematical physicists.

Notation.We work on the category of realC∞-manifolds. By a vector bundle over a
manifoldX, we mean aC∞ vector bundle overX. We will also identify a vector bundle
with the corresponding sheaf ofC∞ sections. By the same token, a sheaf onX should be
understood as a sheaf of modules over the algebra ofC∞ functions onX.

2. Local systems on tori

Let us begin by briefly recalling the Fourier–Mukai transform for real tori, as defined by
Arinkin and Polishchuk[1] and Bruzzo et al.[3]; the interested reader should refer to these
papers for the details of this construction.

Let T be thed-dimensional real torus, that isT = R
d/Λ for the rankd integral lattice

Λ ⊂ R
d . The associated dual torus is defined asT̂ = (Rd)∗/(Λ)∗, where

(Λ)∗ := {z ∈ (Rd)∗ : z(y) ∈ Z,∀y ∈ Λ}, (2.1)

is the dual lattice. From the exact sequence

0 → HomZ(Λ,U(1)) → H1(T,O∗
T )

c1−→H2(T,Z) → 0, (2.2)

we see that, up to gauge equivalence, points inT̂ parametrize flat unitary connections on
the trivial line bundleC = T × C → T , since we have

T̂ = H1(T,R)/H1(T,Z)
exp∼= HomZ(Λ,U(1)) ∼= U(1)d. (2.3)

For ξ ∈ T̂ , x ∈ R
d , a ∈ Λ andλ ∈ C, consider the equivalence relation

R
d × T̂ × C → R

d × T̂ × C/ ∼, (x+ a, ξ, λ) ∼ (x, ξ,exp(ξ(a))λ). (2.4)

The quotient space under ‘∼’ defines the Poincaré line bundleP → T × T̂ . Let p and
p̂ denote the natural projections ofT × T̂ onto its first and second factors, respectively.
In accordance with(2.4), the bundleP has the property that forξ ∈ T̂ , the restriction
P |p̂−1(ξ) ∼= Lξ, where the latter denotes the flat line bundle parametrized byξ. It is
straightforward to see that

Ω1
T×T̂

= p∗Ω1
T ⊕ p̂∗Ω1

T̂
. (2.5)

Corresponding to the definition ofP and its above property, it is shown in[3] that there
exists a canonical connection∇P : P → P ⊗Ω1

T×T̂
, whose connection form is given by

A = 2πι
d∑

j=1

ξj dzj, (2.6)

where{zj} are (flat) coordinates onT and{ξj} are dual (flat) coordinates on̂T . The con-
nection∇P splits as the sum∇r

P ⊕∇ t
P , where

∇r
P = (1P ⊗ r) ◦ ∇P, ∇ t

P = (1P ⊗ t) ◦ ∇P, (2.7)

with natural mapsr : Ω1
T×T̂

→ p∗Ω1
T , andt : Ω1

T×T̂
→ p̂∗Ω1

T̂
.
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For later purposes we shall denote the dual of any complex vector bundleE by E∨ and
in particular the dual line bundle ofP by P∨.

Now consider the categoriesSky(T̂ ) andLoc(T) defined as follows (see[3]):

• Loc(T) is the category ofunitary local systemsonT . Its objects are pairs(E,∇) consisting
of a smooth complex vector bundleE → T and a flat unitary connection∇. Morphisms
are simply bundle maps compatible with the connections.

• Sky(T̂ ) is the category of skyscraper sheaves onT̂ of finite length, that is, dimH0(T̂ , S) <

∞, for all S ∈ Ob(Sky(T̂ )).

TheFourier–Mukai transformis the invertible functor

F : Loc(T) → Sky(T̂ ), (2.8)

which we now describe. Given(E,∇) ∈ Ob(Loc(T)), we have therelative connection

∇r
E : p∗E ⊗ P∨ → p∗E ⊗ P∨ ⊗ p∗Ω1

T ,

∇r
E = (1(E⊗P∨) ⊗ r) ◦ (∇ ⊗ 1P∨ + 1E ⊗∇P∨), (2.9)

andthe transversal connection

∇ t
E : p∗E ⊗ P∨ → p∗E ⊗ P∨ ⊗ p∗Ω1

T̂
,

∇ t
E = (1(E⊗P∨) ⊗ t) ◦ (∇ ⊗ 1P∨ + 1E ⊗∇P∨). (2.10)

As a section of Ends(p∗E ⊗ P∨)⊗Ω2
T×T̂

, the commutator satisfies (see e.g.[10]):

∇r
E∇ t

E + ∇ t
E∇r

E = 1E ⊗∇2
P∨ . (2.11)

Lemma 2.1(Bruzzo et al.[3]). If (E,∇) ∈ Ob(Loc(T)), then:

(1) Rjp̂∗(ker∇r
E) = 0, for 0 ≤ j ≤ d − 1.

(2) S = Rdp̂∗(ker∇r
E) ∈ Ob(Sky(T̂ )).

Moreover, dimH0(T̂ , S) = rankE.

We say thatS = F(E,∇) is the Fourier–Mukai transform of the local system(E,∇).
Conversely, takeS ∈ Ob(Sky(T̂ )), and letσ be the support ofS. Clearly,p̂∗S ⊗ P as a

sheaf onT × T̂ , is supported onT × σ. Thus

Rjp∗(p̂∗S ⊗ P) = 0, for 0 < j ≤ d, (2.12)

while E = R0p∗(p̂∗S ⊗ P) is a locally free sheaf of rank dimH0(T̂ , S). In order to get a
connection onE, consider again the relative connection:

1S ⊗∇r
P : p̂∗S ⊗ P → p̂∗S ⊗ P ⊗ p∗Ω1

T . (2.13)

Pushing it down toT , we get a connection

∇ = R0p∗(1S ⊗∇r
P ) : E → E ⊗Ω1

T , (2.14)

sinceR0p∗(p̂∗S⊗P⊗p∗Ω1
T ) = E⊗Ω1

T , by the projection formula. Since(∇r
P )

2 = 0, we
conclude that∇ is indeed flat, hence(E,∇) ∈ Ob(Loc(T)), as desired. We use the notation
(E,∇) = F̂(S).
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In summary, referring once more to[3], we have the following proposition.

Proposition 2.2. The functorsF andF̂ are inverse to each other, and yield an equivalence
between the categoriesLoc(T) andSky(T̂ ).

3. The Fourier–Mukai transform

LetM be a smooth manifold of dimensionm, which is the total space of ad-torus bundle
over a(m− d)-dimensional connected manifoldB, that is

T d ↪→ M
π−→B. (3.1)

Given a pointb ∈ B, we defineTb = π−1(b) to be the fiber overb, where the pointo(b)marks
the origin ofTb. Regarded as a bundle of groups,π : M → B admits a discrete structure
group Aut(T) ∼= GL(d,Z), and so the former has the structure of a flat fiber bundle and
admits a 0-sectiono : B → M. Since the fiberT is compact, this flat structure is determined
by a holonomy homomorphismρ : π1(B) → Aut(T) ∼= GL(d,Z) as a twisted product

M ∼= B̃ ×ρ T. (3.2)

Remark 3.1. For the purpose of this paper, we may weaken the structure of the fiber bundle
π : M → B as follows. Let Diff(T, o) be the group of diffeomorphisms ofT which fix
the origin. Then Diff(T) is given as a crossed product Diff(T) ∼= T ×ϕ Diff (T, o), where
T acts by translations and Diff(T, o) acts onT in the obvious way. Moreover the canonical
homomorphism Diff(T, o) → π0(Diff (T, o)) to the mapping class group is realized as a
deformation retraction

(3.3)

via ϕ �→ ϕ̃ �→ ϕ̂ = ϕ̃|Λ ∈ Aut(Λ), whereϕ̃ is the unique equivariant lift ofϕ ∈ Diff (T, o)
to Diff (Rd, o) andϕ̂ coincides with the automorphismϕ∗ induced byϕ on the fundamental
groupπ1(T, o) ∼= Λ. The statement about the deformation retraction follows from the
fact that any diffeomorphism (actually any homeomorphism) which fixes the latticeΛ is
isotopic to the identity, and in fact the connected component Diffe(T, o) is contractible to
the identity; an elementary result which is stated in the 1960’s thesis of John Franks (as
pointed out to us by Keith Burns). This said, we may start with a fiber bundleπ : M → B

with structure group Diff(T, o). This still guarantees the existence of the sectiono : B → M

and the previous holonomy homomorphismρ : π1(B) → Aut(T) is now recovered as the
canonical homomorphismπ1(B) → π0(Diff (T, o)) associated to the fiber bundleπ : M →
B. Formula(3.4)for π1(M) remains valid, as well as the flat structure(3.7)of the dual fiber
bundleπ̂ : M̂ → B, the latter property being a consequence of the homotopy invariance
of singular cohomology. In fact, the above deformation retraction implies that the structure
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group of a Diff(T, o)-torus bundle admits a unique reduction to Aut(T) ⊂ Diff (T, o) and so
π : M → B is still diffeomorphic to a flat fiber bundle of the form(3.2).

The fundamental group ofM is determined as a crossed product

0 → Λ = π1(T) → π1(M) ∼= π1(T)×ρ∗ π1(B)
←−→π1(B) → 1, (3.4)

whereρ∗ is given by the induced action ofπ1(B) onΛ via the isomorphism GL(d,Z) ∼=
Aut(Λ).

We have the exact sequence

0 → T(π) → TM → π∗TB→ 0, (3.5)

and the dual sequence of 1-forms

0 → π∗Ω1
B → Ω1

M → Ω1
M/B → 0. (3.6)

Observe that a flat structure ofπ : M → B defines a splitting of the exact sequences(3.5)
and (3.6).

The dual fiber bundleM̂ → B is given by the total space ofR1π∗R/R1π∗Z as a
(locally constant) sheaf onB. If π̂ : M̂ → B is the natural projection, it is easy to see that
π̂−1(b) = T̂b. Note that this projection also has a 0-sectionσ0 : B → M̂. It follows that
π̂ : M̂ → B is given by the flat bundle of fiber cohomologies

M̂ ∼= B̃ ×ρ∗ T̂ , (3.7)

where ρ∗ is the induced action ofπ1(B) on T̂ = H1(T,R)/H1(T,Z). Furthermore,

R1π̂∗R/R1π̂∗Z coincides withM as sheaves onB, and we haveˆ̂M ∼= M.
Let Z = M ×B M̂ be the fiber product, with its natural projectionsp : Z → M and

p̂ : Z → M̂ onto the first and second factors. Clearly,π ◦ p = π̂ ◦ p̂ and(π ◦ p)−1(b) =
Tb × T̂b.

(3.8)

It is also easy to see thatp−1(x) = T̂π(x), for all x ∈ M andp̂−1(y) = Tπ̂(y), for all y ∈ M̂.
DefiningΩ1

Z/M̂
= Ω1

Z/p̂
∗Ω1

M̂
, recall that the Gauss–Manin connection yields a splitting

of the short exact sequence

0 → p̂∗Ω1
M̂

→ Ω1
Z

r−→Ω1
Z/M̂

→ 0, (3.9)

such that we have the decomposition

Ω1
Z = p̂∗Ω1

M̂
⊕Ω1

Z/M̂
. (3.10)
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From(3.6) it follows that

Ω1
Z/M̂

= p∗Ω1
M/B, (3.11)

sincep̂ : Z → M̂ is the pull-back fibration ofπ : M → B alongπ̂.
There exists a line bundleP overZ = M×B M̂, with the property thatP|(π ◦p)−1(b) is

just the Poincaré line bundlePb overTb × T̂b, for all b ∈ B (see[4]). We callP the relative
Poincaré line bundle. Just as in the absolute case, it has the property that forξ ∈ M̂, the
restrictionP|p̂−1(ξ) ∼= Lξ, where the latter denotes the flat line bundle parametrized by
ξ ∈ T̂b ⊂ M̂.

There is a canonical connection onP which we denote by∇P. Following [4], we can
write its connection matrixA in a suitable gauge on an open subsetU × T × T̂ ⊂ Z as
follows:

A = 2πι
d∑

j=1

ξj dzj, (3.12)

where{zj} are (flat) coordinates onT and {ξj} are dual (flat) coordinates on̂T . In such
coordinates the curvatureF = ∇2

P is then given by

F = 2πι
d∑

j=1

dξj ∧ dzj. (3.13)

In the same coordinate system, we have∇2
P∨ = −F.

3.1. Transforming foliated bundles

Let E → M be a Hermitian vector bundle of rankn. With reference to(3.5), we assume
a foliated bundlestructure onE given by aflat partial unitary connection[8]:

◦
∇E : E → E ⊗Ω1

M/B = E ⊗Ω1
M/π∗Ω1

B, (3.14)

satisfying(
◦
∇E)

2 = 0.

The local structure of a foliated bundle(E,
◦
∇E) onM is described next.

Example 3.2. Local structure of foliated bundles onM: intuitively, a foliated bundle on
M −→π B is a family of flat bundles (unitary local systems)(Eb,∇Eb

) on the fibersTb,
parametrized byb ∈ B. Of course, the topology ofE has to be taken into account. The local
description is quite similar to that of the Poincaré line bundle in(2.4), which is of course
an example of a foliated bundle. Thus for sufficiently small open setsU ⊂ B, there are
isomorphisms

(3.15)
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where the identification on the LHS is given by

(b, x+ a, λ) ∼ (b, x,exp(ξb(a))λ), (3.16)

for ξ = (ξ1, . . . , ξn), ξj : U → T̂ , T̂
exp∼=HomZ(Λ,U(1)),b ∈ U,x ∈ R

d ,a ∈ Λandλ ∈ C
n.

Relative to a (good) open coverU of B, we have coordinate changes overUik = Ui ∩ Uk

of the form

(id, ϕ̃ik, gik) : Uik × R
d × C

n
∼=−→Uik × R

d × C
n,

compatible with the identifications in(3.16), that is

Adj(gik(b)) ◦ exp(ξkb(a)) = exp(ξib(ϕ̂ika)). (3.17)

Here{ϕik} is the smooth 1-cocycle onUwith values in Diff(T, o) describing the fiber bundle
π : M → B, ϕ̃ is the unique equivariant lift ofϕ ∈ Diff (T, o) to Diff (Rd, o) andϕ̂ = ϕ̃|Λ
is the induced automorphism on the latticeΛ. {gik} is a smooth 1-cochain of local gauge
transformationsgik : Uik → U(n) onU.

From(3.13)we see that the unitary connections∇P and∇P∨ are flat along the fibers of

the projectionp̂ : Z → M̂ in (3.8)and induce flat partial unitary connections
◦
∇P and

◦
∇P∨

onP andP∨. PullingE back toZ and tensoring with the dual Poincaré bundleP∨, consider
the flat partial connection:

∇̃r
E = p∗ ◦

∇E ⊗ 1P∨ + 1E ⊗ ◦
∇P∨ : p∗E ⊗ P∨ → p∗E ⊗ P∨ ⊗Ω1

Z/M̂
. (3.18)

Now for eachb ∈ B, the pair(E,
◦
∇E) restricts to a unitary local system(Eb,∇Eb

) over the
fiberTb, while the connectioñ∇r

E restricts to the operator̃∇r
Eb

induced by(2.9). Therefore,

Rjp̂b,∗((ker∇̃r
E)|Tb × T̂b) ∼= Rjp̂b,∗(ker∇̃r

Eb
), (3.19)

wherep̂b : Tb × T̂b → T̂b is the projection onto the second factor.
On the other hand, letιb, ι̂b be the inclusions ofTb, T̂b into M andM̂ respectively, and

consider the diagram:

(3.20)

Then the topological base change[5] yields the isomorphism (for 0≤ j ≤ d):

Rjp̂∗(ker∇̃r
E)|T̂b

∼= Rjp̂b,∗((ker∇̃r
E)|Tb × T̂b). (3.21)

Combining with(3.19), one obtains:

Rjp̂∗(ker∇̃r
E)|T̂b

∼= Rjp̂b,∗(ker∇̃r
Eb

). (3.22)

It then follows fromLemma 2.1that

Rjp̂∗(ker∇̃r
E) = 0, j = 0, . . . , d − 1. (3.23)
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Now we set

Ê = Rdp̂∗(ker∇̃r
E), (3.24)

with its support denoted byΣ = Σ(E,
◦
∇E) = suppÊ. From(3.22), we have then

Ê|T̂b
∼= Rdp̂b,∗(ker∇̃r

Eb
). (3.25)

The following elementary lemma is useful. As it is purely local, it is valid for any foliated
bundleE → M.

Lemma 3.3. For sufficiently small open setsV ⊂ M, the foliated Hermitian vector bundle

E|V admits
◦
∇E-parallel unitary framess = (s1, . . . , sn), that is

◦
∇Esi = 0, i = 1, . . . , n.

It follows that
◦
∇E is linear over the sheafπ∗OB of basic functions and the sheafker

◦
∇E of

◦
∇E-parallel sections is locally free as a module overπ∗OB, of the same rank as E.

Proof. This can be shown easily by working in a sufficiently small Frobenius chartV =
U×U ′ ⊂ U×T over whichE trivializes, choosing any unitary frame alongU× a, a ∈ U ′

and then using parallel transport relative to the flat partial unitary connection
◦
∇E in the fiber

directionU ′. �

In our context, this means that∇̃r
E is linear with respect tôp∗O

M̂
. In particular, the sheaf

ker∇̃r
E of ∇̃r

E-parallel sections inp∗E ⊗ P∨ is a locally free module over̂p∗O
M̂

. Further,
the derived direct imagêE is a torsion module overO

M̂
.

For Σ = suppÊ, we shall also consider the fiber productZΣ = M ×B Σ, with pΣ :
ZΣ → M, andp̂Σ : ZΣ → Σ, denoting the natural projections:

(3.26)

There is also the restriction toZΣ of the relative Poincaré line bundleP; we denote this by
PΣ = P|ZΣ. Let j : Σ ↪→ M̂ be the inclusion map, and letj̃ : ZΣ ↪→ Z be the induced
inclusion.

Next we setK = j̃∗(ker∇̃r
E), and consider the sheaf

L = j∗Ê = Rdp̂Σ,∗(K). (3.27)

Proposition 3.4. For Ê given by(3.24)andΣ = suppÊ, we have

(1) Ê|T̂b ∈ Ob(Skyn(T̂b)) for b ∈ B and the supportΣ of Ê is closed and transversal to
all fibers T̂b.
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(2) For Σb = Σ ∩ T̂b = supp(Ê|T̂b), the counting function|Σb| satisfies1 ≤ |Σb| ≤ n,
∀b ∈ B. The setsU ⊂ B,  = 1, . . . , n, for which |Σb| ≥  are open in B, possibly
empty for > 1, and satisfyUn ⊆ · · · ⊆ U+1 ⊆ U ⊆ · · · ⊆ U1 = B.

(3) For everyb ∈ B, there is an open neighborhoodU ⊂ B of b, such that the connected
componentŝπ−1

Σ (U)ξ of π̂−1
Σ (U) ⊂ Σ containingξ ∈ Σb separate the elementsξ ∈ Σb

andπ̂−1
Σ (U)ξ can be exhausted by a finite number of smooth sectionsσi : U → π̂−1

Σ (U)ξ,
such thatσi(b) = ξ. For U sufficiently small, the number of sections needed is bounded
by the rank ofL at ξ ∈ Σb.

(4) The rank ofL→ Σ at ξ ∈ Σb is equal to the multiplicity of the irreducible represen-
tationexp(ξ) in the unitary local system(Eb,∇Eb

) onTb, that is the multiplicity of the
trivial representation in the flat bundleEb ⊗ L∨

ξ → Tb.

We say thatΣ ↪→ M̂, satisfying (1)–(3) in Lemma 3.4, is an-fold ramified covering of B
of dimensionm− d = dim(B). A point ξ ∈ Σ is calledregularor smooth, if the connected
component̂π−1

Σ (U)ξ is given by a single sectionσ : U ∼= π̂−1
Σ (U)ξ for a sufficiently small

open neighborhoodU of b = π̂(ξ). TheregularsetΣreg ⊆ Σ is the set of regular points in
Σ. Σreg is an open, dense subset ofΣ, Σreg ↪→ M̂ is a smooth submanifold and the rank of
L is locally constant onΣreg, that isL is a locally free module on the connected components
of Σreg. The closed, residual complementΣsing = Σ \ Σreg is called thebranch locusof
π̂Σ : Σ → B. We say thatΣ ↪→ M̂ issmoothif the branch locusΣsing is empty. In this case
we haveΣreg = Σ andΣ ↪→ M̂ is a closed smooth submanifold, the rank ofL is locally
constant onΣ and the semicontinuous counting function|Σb| is locally constant, hence
constant onB. In particular,Σ is smooth ifUn = B, that is|Σb| ≡ n onB, in which case
L is a complex line bundle onΣ. If Σ is in addition connected, thenΣ is a smoothn-fold
covering space ofB in the usual sense and we say thatπ̂Σ : Σ → B is non-degenerate.

Proof. Lemma 2.1and the identification(3.22)imply that

Ê|T̂b = Rdp̂b,∗(ker∇̃r
Eb

) ∈ Ob(Skyn(T̂n). (3.28)

SinceΣb = supp(Ê|T̂b), and dimH0(T̂b, Ê|T̂b) = n, part(1) follows easily.
Forξ ∈ Σb, we havep̂−1(ξ) = Tb and from(3.25), we see that the rank ofL atξ is given

by the rank of the cohomology groupHd(Tb, ker∇̃r
Eb

). This proves (4).
From (1), we have 1≤ |Σb| ≤ n. From (4), we see that the second condition in (2) is

really the semicontinuity of the number of distinct holonomy representationsξ ∈ Σb in
the bundlesEb. Thus forb ∈ B, there is a neighborhoodUb ⊂ B, such that|Σb′ | ≥ |Σb|,
b′ ∈ Ub. Thenb ∈ U implies thatUb ⊂ U and (2) follows.

Finally, (3) is proved by using the local description of a foliated bundle inExample 3.2
and (4). In fact, the number of sections needed is equal to the number of distinct germs at
b among the functionsξj passing throughξ in (3.16)and therefore is bounded by the rank
of L at ξ ∈ Σb. �

In view of the above result, we say thatÊ is arelative skyscraper(that is, a sheaf whose
restrictionÊ|T̂b to each fiberTb is a skyscraper sheaf of constant finite length),L is the
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sheaf of multiplicitiesandΣ is thespectral coveringof (E,
◦
∇E). Note that these structures

are completely determined by the flat partial connection
◦
∇E.

3.2. The inverse transform for relative skyscrapers

The inverse construction is considerably simpler. Our starting point is the pair(S,Σ),
whereS is a relative skyscraper of constant lengthn on M̂ supported on an-fold ramified
coveringΣ ↪→ M̂ of B of dimensionm− d = dim(B).

Using the same notation as before, recall that the fiber productZΣ = M ×B Σ, is of di-
mensionm, andpΣ : ZΣ → M is ann-fold ramified covering map. Thus it is easy to see that

Š = pΣ,∗(p̂∗
ΣS⊗ PΣ), (3.29)

is a locally free sheaf of rankn onM. Furthermore, the construction reveals thatŠ carries a
canonical flat partial connection

◦
∇ Š. In fact,p̂∗

ΣS carries a canonical flat partial connection
relative top̂Σ : ZΣ → M̂ and so doesPΣ.

3.3. The main result

Motivated by the results above, let us introduce the following categories of sheaves with
connections onM andM̂.

Definition 3.5. Vect
◦∇
n (M) is the category of foliated Hermitian vector bundles onM en-

dowed with a flat partial unitary connection. Objects inVect
◦∇
n (M) are pairs(E,

◦
∇E) con-

sisting of a Hermitian vector bundleE of rankn and a flat partial unitary connection
◦
∇E.

Morphisms are bundle maps compatible with such connections.

Definition 3.6. RelSkyn(M̂) is the category ofrelative skyscraperson M̂. Objects in
RelSkyn(M̂) are pairs(S,Σ) consisting of a relative skyscraperS of constant lengthn on
M̂, supported on an-fold ramified coveringΣ ↪→ M̂ of B of dimensionm− d = dim(B).
Morphisms are sheaf maps ofO

M̂
-modules.

The constructions inSections 3.1 and 3.2define additive covariant functors

F : Vect
◦∇
n (M) → RelSkyn(M̂), F̂ : RelSkyn(M̂) → Vect

◦∇
n (M). (3.30)

For limits in the appropriate sense, let

Vect
◦∇ (M) = lim

n
Vect

◦∇
n (M) and RelSky(M̂) = lim

n
RelSkyn(M̂). (3.31)

With these definitions in place, we can state our main result.

Theorem 3.7. The Fourier–Mukai transformF defines an additive natural equivalence of
categories

F : Vect
◦∇ (M)

∼=−→RelSky(M̂). (3.32)
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Proof. We claim thatF andF̂ are adjoint functors which in fact define an equivalence of
categories. From the construction ofF andF̂, there exist natural transformations

φS : S→ F ◦ F̂(S), S ∈ Ob(RelSkyn(M̂)), (3.33)

and

ψE : F̂ ◦ F(E) → E, E ∈ Ob(Vect
◦∇
n (M)). (3.34)

These natural transformations define adjunction maps

Φ : MorphV(F̂(S), E) → MorphR(S,F(E)),

Ψ : MorphR(S,F(E)) → MorphV(F̂(S), E), (3.35)

where MorphV and MorphR denote morphisms inVect
◦∇
n (M)andRelSkyn(M̂), respectively.

Explicitly, for f : F̂(S) → E, we have by naturality

Φ(f) = F(f) ◦ φS, (3.36)

so thatφS determinesΦ. Likewise, forg : S→ F(E), we have by naturality

Ψ(g) = ψE ◦ F̂(g), (3.37)

so thatψE determinesΨ as well. The natural transformations(3.33), (3.34)correspond then
to φS = Φ(1F̂(S)) andψE = Ψ(1F(E)), respectively. The fact that the adjunction mapsΦ

andΨ are inverses of each other, is equivalent to the compositions

F(E)
φF(E)−−→ F ◦ F̂ ◦ (F(E)) = F ◦ (F̂ ◦ F(E))

F(ψE)−−→ F(E),

F̂(S)
F̂(φS)−−→ F̂ ◦ (F ◦ F̂(S)) = F̂ ◦ F ◦ (F̂(S))

ψF̂(S)−−→ F̂(S), (3.38)

resulting in the identities ofF(E) andF̂(S), respectively.
The construction has the further property that it is compatible with localization relative to

open subsetsU ⊂ B, that is, the restrictions toπ−1(U) andπ̂−1(U). Moreover, we observe
that the restriction ofF andF̂ to the fibers ofM andM̂ at b ∈ B respectively, coincides
with the functors

Fb : Loc(Tb) → Sky(T̂b), F̂b : Sky(T̂b) → Loc(Tb), (3.39)

for eachb ∈ B. It follows from [3,10] thatφSb : 1
T̂b

∼= Fb ◦ F̂b andψEb
: F̂b ◦ Fb

∼= 1Tb
.

From this we conclude thatφS andψE are indeed isomorphisms. �

Let V ∈ Vectn(B), whereVectn(B) is the category of complex vector bundles of rankn

overB. Thenπ∗V carries a canonical flat partial connection
◦
∇π∗V , so that(π∗V,

◦
∇π∗V ) is

an object inVect
◦∇
n (M), while π̂∗

0V = π̂∗
Σ0

V is an object inRelSkyn(M̂), supported on the

0-sectionΣ0 = σ0(B) ⊂ M̂. The construction ofF is compatible with these pull-backs,
that is we have a commutative diagram
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(3.40)

Moreover, the Fourier–Mukai transformF has a module property with respect toVect∇(B).

Corollary 3.8. For (E,
◦
∇E) ∈ Vect

◦∇ (M) andV ∈ Vect(B), the Fourier–Mukai transform
F satisfies

F((π∗V,
◦
∇π∗V )⊗ (E,

◦
∇E)) ∼= π̂∗

ΣV ⊗ F(E,
◦
∇E), (3.41)

whereΣ is the support ofF(E,
◦
∇E).

4. The Fourier–Mukai transform for vector bundles with Poincaré basic connections

4.1. Transforming bundles with Poincaré basic connections

LetE → M be a foliated Hermitian vector bundle of rankn, and let∇E : E → E⊗Ω1
M

be a unitary connection onE. We say that∇E is adaptedto the foliated structure onE,

if ∇E induces the flat partial connection
◦
∇E : E → E ⊗ Ω1

M/B via the canonical map

Ω1
M → Ω1

M/B in (3.6). The existence of adapted connections follows from an elementary
partition of unity argument.

At this point, it is also useful to introduce the bigrading on the DeRham algebraΩ∗
M

determined by a splitting of the exact sequence(3.5), respectively(3.6):

Ω
u,v
M = Ω

u,0
M ⊗Ω

0,v
M = π∗Ωu

B ⊗Ωv
M/B. (4.1)

u is called thetransversal or basicdegree andv is called thefiberdegree.
Consider now the adapted connection

∇̃E = p∗∇E ⊗ 1P∨ + 1E ⊗∇P∨ : p∗E ⊗ P∨ → p∗E ⊗ P∨ ⊗Ω1
Z, (4.2)

onp∗E⊗P∨. With respect to a corresponding splitting of(3.9), we have∇̃E = ∇r
E ⊕∇ t

E,
where

∇r
E = (1E⊗P∨ ⊗ r) ◦ ∇̃E : p∗E ⊗ P∨ → p∗E ⊗ P∨ ⊗Ω1

Z/M̂
, (4.3)

is the relative connection, and

∇ t
E = (1E⊗P∨ ⊗ t) ◦ ∇̃E : p∗E ⊗ P∨ → p∗E ⊗ P∨ ⊗ p̂∗Ω1

M̂
, (4.4)

is the transversal connection, that is the components of type(0,1) and(1,0) of ∇E respec-
tively.

In the sequel, we always view the curvature∇2
E of ∇E as a 2-form with values in the

adjoint bundle Ends(E) of skew-hermitian endomorphisms ofE.
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Lemma 4.1. The type-decomposition of the curvature∇̃2
E is given by

(∇̃2
E)

0,2 = p∗((∇2
E)

0,2)⊗ 1P∨ = 0, (4.5)

(∇̃2
E)

2,0 = p∗((∇2
E)

2,0)⊗ 1P∨ = (∇ t
E)

2, (4.6)

and

(∇̃2
E)

1,1 = p∗((∇2
E)

1,1)⊗ 1P∨ − 1E ⊗ F = Ξ, (4.7)

where the operatorΞ is given by the commutator

Ξ = ∇r
E ◦ ∇ t

E − ∇ t
E ◦ ∇r

E : p∗E ⊗ P∨ → p∗E ⊗ P∨ ⊗Ω
1,1
Z . (4.8)

Henceforth we adopt the usual sign rule which equips the extension of the transversal
operator∇ t

E to forms of higher degree with a sign(−1)v on forms of type(u, v).

Proof. Firstly from (4.2)and the decomposition(4.3), (4.4)we have

∇̃E = p∗∇E ⊗ 1P∨ + 1E ⊗∇P∨ = ∇r
E + ∇ t

E. (4.9)

Computing the curvature operator∇̃2
E in two ways, we obtain

∇̃2
E = (p∗∇E)

2 ⊗ 1P∨ + 1E ⊗∇2
P∨ = p∗(∇2

E)⊗ 1P∨ − 1E ⊗ F = (∇r
E ± ∇ t

E)
2

= (∇r
E)

2 + (∇ t
E)

2 +Ξ. (4.10)

Since∇E is adapted to the foliated structure
◦
∇E onE, we have(∇2

E)
0,2 = 0. Since∇̃E is

adapted to the foliated structure onp∗E ⊗ P∨ relative top̂ : Z → M̂, we have(∇̃2
E)

0,2 =
(∇r

E)
2 = 0. The curvatureF of the relative Poincaré bundleP is of type(1,1) by (3.13)

and(∇ t
E)

2 andΞ are of type(2,0) and(1,1) respectively by definition. Thus the assertions
(4.5)–(4.7)follow from (4.10). We use(3.11), to conclude that the pull-backp∗ preserves
the curvature types. �

We need to recall a few facts aboutbasicconnections in the foliated Hermitian vector
bundle(E,

◦
∇E) [8]. Note that all the statements below are of local nature.

Lemma 4.2. For any adapted connection∇E, the following conditions are equivalent:

(1) The contractioniX∇2
E = 0, for all vector fields X inT(π);

(2) The mixed component(∇2
E)

1,1 of ∇E vanishes;
(3) The curvature∇2

E coincides with the basic component(∇2
E)

2,0, that is∇2
E = (∇2

E)
2,0;

(4) For anyπ-projectable transversal vector field̃Y , the operator∇Ỹ preserves the sheaf

ker
◦
∇E and depends only onY = π∗Ỹ .

The following condition is a consequence of the above properties:
(5) For π-projectable transversal vector fields̃Y, Ỹ ′, the curvature∇2

E(Ỹ , Ỹ ′) preserves

ker
◦
∇E and depends only onY = π∗Ỹ , Y ′ = π∗Ỹ ′.



374 J.F. Glazebrook et al. / Journal of Geometry and Physics 50 (2004) 360–392

Proof. Since (∇2
E)

0,2 = (
◦
∇E)

2 = 0, the equivalence of (1)–(3) is immediate, so we
elaborate only on conditions (4) and (5). The mixed component(∇2

E)
1,1 is characterized by

the formula

(∇2
E)

1,1(X, Y)(s) = ∇2
E(X, Ỹ)(s) = ◦

∇X(∇Ỹ s)− ∇Ỹ (
◦
∇Xs)− ◦

∇ [X,Ỹ ]s, (4.11)

for vector fieldsX in T(π) andπ-projectable transversal vector fieldsỸ . Thus fors ∈ ker
◦
∇,

we have from (2)

(∇2
E)

1,1(X, Y)(s) = ◦
∇X(∇Ỹ s) =

◦
∇X(∇Y s) ≡ 0, (4.12)

sinceπ∗[X, Ỹ ] = [π∗X,π∗Ỹ ] = [0, Y ] = 0. The implication (4)⇒ (2) follows from(4.12),
usingLemma 3.3.

Likewise, the vector fields̃Y , Ỹ ′ satisfyπ∗[Ỹ , Ỹ ′] = [π∗Ỹ , π∗Ỹ ′] = [Y, Y ′] and we have

from (4) for s ∈ ker
◦
∇:

(∇2
E)

2,0(Y, Y ′)(s) = ∇2
E(Ỹ , Ỹ ′)(s) = ∇Ỹ (∇Ỹ ′s)− ∇Ỹ ′(∇Ỹ s)− ∇[Ỹ ,Ỹ ′]s

= ∇Y (∇Y ′s)− ∇Y ′(∇Y s)− ∇[Y,Y ′]s. (4.13)

Thus (4) implies (5). �

We say that∇E is abasicconnection, if any of the equivalent conditions inLemma 4.2
holds. In general, a foliated vector bundle(E,

◦
∇E) does not admit basic connections. In our

context, the following example describes essentially the class of foliated bundles which do
admit basic connections.

Example 4.3. Locally trivial families of flat bundles: as inExample 3.2, we view a foliated
vector bundle(E,

◦
∇E) as a family of flat bundles on the fibersTb, parametrized byb ∈ B.

We say that this family islocally trivial if there exists a flat bundle(E0,∇0) on the torus
T , determined by a holonomy homomorphismξ = (ξ1, . . . , ξn) ∈ HomZ(Λ,U(n)), and
a (good) open coverU of B such that for everyU ∈ U, there are isomorphisms of foliated
vector bundles as indicated in the following diagram, similar to(3.15).

(4.14)

On overlapsUik in U, the coordinate changes on the LHS are given by(3.17), except that
now the holonomy homomorphismsξi are independent ofb ∈ Ui.

In the case of locally trivial families, much more can be said about the spectral covering
Σ of (E,

◦
∇E). In short, we claim thatΣ is a finite union ofleaves, that is maximal integral

manifolds, of the transverse foliation̂F on π̂ : M̂ → B determined by(3.7), the leaves of
F̂ being holonomy coverings overB. Locally overU, ΣU = π̂−1

Σ (U) is given by a finite
number of constant sections of the corresponding trivializationU × T̂ → U of M̂ → B

and we haveΣreg = Σ, that is all points ofΣ are regular and the branch locus is empty.
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ThereforeΣ ↪→ M̂ is a smooth submanifold and the rank of the multiplicity sheafL
is locally constant onΣ, hence constant on the connected components ofΣ. The above
local properties ofΣU imply that the connected components of the spectral coveringΣ

are integral manifolds of the transverse foliationF̂. The structure ofΣU shows also that
π̂Σ : Σ → B satisfies the unique path-lifting property. Therefore any path in the leafF̂ξ

throughξ ∈ Σ, starting atξ must already be in the connected component ofΣ containing
ξ. Thus the connected components ofΣ are maximal integral manifolds of̂F. These leaves
are closed inM̂, since they intersect the complete transversalsT̂b in ≤ n points. More
precisely, the setsΣb ⊂ T̂b are invariant under the action ofπ1(B, b) on T̂b determined by
ρ∗ : π1(B) → Aut(T̂ ) ∼= Aut(Λ), with the orbits and their multiplicities corresponding to
the component leaves ofΣ and the rank ofL on these components respectively. This allows
us to decompose(L,Σ), respectively(E,

◦
∇E) according to its leaf components.

We abbreviate the above properties ofΣ by saying thatΣ ↪→ M̂ is locally constant.
From the local formula(3.13) for the curvatureF of the Poincaré bundleP, we see that
F|ZΣU = 0. Obviously,∇0 extends to a basic, in fact a flat connection∇U onU × E0 and
these connections can be patched together to a basic connection∇E on E via a partition
of unity onB subordinate to the coverU. A special case of locally trivial families of flat
bundles on the fibers is of course given by flat bundles(E,∇E)on the total spaceM (compare
Section 5.1), in which case the bundle is determined by a global holonomy homomorphism
ρ̃ : π1(M) → U(n), so that the representation onΛ is determined by restriction, that is by
the diagram

(4.15)

In order to understand the interplay between the obstruction for the existence of a basic
connection and the behavior of the curvature termF|ZΣ, we next look at the case of foliated
complex line bundles.

Example 4.4. Suppose that(E,
◦
∇E) is a foliated complex line bundle onM. In this case,

the spectral coveringΣ ↪→ M̂ is a sectionσ of M̂ → B, the multiplicity sheafL onΣ is
a sheaf of rank 1 andpΣ : ZΣ → M is a diffeomorphism. Thus byTheorem 3.7we have
the following.

p∗
ΣE ∼= p̂∗

ΣL⊗ PΣ. (4.16)

It follows that the connection∇P and any connection∇L onL induce an adapted connection
∇E on E, such thatp∗

Σ((∇2
E)

1,1) = F|ZΣ (compareSection 4.2). This connection∇E is
basic, if (and only if) the spectral sectionσ is locally constant, that is(E,

◦
∇E) is a locally

trivial family of flat line bundles. This follows fromExample 4.3.

For foliated line bundles, the functorF : E �→ Lhas the following multiplicative property.
GivenE = E1 ⊗ E2, the spectral sections are related byσ = σ1 + σ2 and we denote by
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pi : Σ → Σi the canonical projection. Then a direct calculation fromp∗
ΣE ∼= p̂∗

ΣL⊗PΣ,
p∗
Σi

Ei
∼= p̂∗

Σi
Li ⊗ PΣi yields the product formula onΣ, respectivelyZΣ

L ∼= p∗
1L1 ⊗ p∗

2L2, PΣ
∼= (1× p1)

∗PΣ1 ⊗ (1× p2)
∗PΣ2. (4.17)

These examples motivate the following definition.

Definition 4.5. The adapted connection∇E isPoincaré basicif the p̂Σ-adapted connection
∇̃E onp∗

ΣE ⊗ P∨Σ onZΣ is basic, that is from(4.7) in Lemma 4.1

j̃∗(∇̃2
E)

1,1 = p∗
Σ(∇2

E)
1,1 − F|ZΣ = 0. (4.18)

Here we view the scalar formF as a form with values in the center ofp∗
Σ Ends(E), using

the canonical isomorphism of foliated bundles Ends(p
∗E ⊗ P∨) ∼= p∗ Ends(E).

For our purposes, it is actually sufficient that the curvaturej̃∗(∇̃2
E)

1,1 vanishes on the
subsheafK = j̃∗(ker∇r

E) defined earlier, that is we havej̃∗(∇̃2
E)

1,1|K = 0 or equivalently

p∗
Σ(∇2

E)
1,1|K = F|ZΣ. (4.19)

This corresponds to the equivalent condition (4) inLemma 4.2applied to the connection
∇̃E.

We now proceed to construct a connection∇L : L→ L⊗ Ω1
Σ, given a Poincaré basic

connection∇E onE → M. From(4.7)we see that

Ξ|ZΣ = 0 : p∗
ΣE ⊗ P∨Σ → p∗

ΣE ⊗ P∨Σ ⊗Ω
1,1
ZΣ

. (4.20)

Therefore the diagram below with exact rows is commutative (up to sign)

(4.21)

and the restriction of̃j∗∇ t
E to the subsheafK induces a connection

∇ker
E : K→ K⊗ p̂∗

ΣΩ1
Σ. (4.22)

Alternatively, we may use the condition(4.19)to arrive at the same conclusion. Recalling
thatL = Rdp̂Σ,∗(K) and using the projection formula, this leads to a connection

∇L = Rdp̂Σ,∗(∇ker
E ) : L→ L⊗Ω1

Σ. (4.23)

For later reference, we compute the curvature of the transformed connection∇L.
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Lemma 4.6. The curvature of the connection∇L is given by

∇2
L = Rdp̂Σ,∗(∇ker

E )2 = Rdp̂Σ,∗(p∗
Σ(∇2

E)
2,0|K). (4.24)

Proof. Since j̃∗(∇̃2
E)

0,2 = j̃∗(∇̃2
E)

1,1 = 0 by assumption, the curvature term̃j∗∇̃2
E =

j̃∗(∇̃2
E)

2,0 = p∗
Σ(∇2

E)
2,0 leaves the sheafK → ZΣ invariant byLemma 4.2, (5) and we

have from(4.6)

∇2
L = Rdp̂Σ,∗(∇ker

E )2 = Rdp̂Σ,∗(j̃∗∇ t
E|K)2 = Rdp̂Σ,∗(j̃∗(∇ t

E)
2|K)

= Rdp̂Σ,∗(j̃∗(p∗(∇2
E)

2,0)|K) = Rdp̂Σ,∗(p∗
Σ(∇2

E)
2,0|K).

In this calculation we also used diagram(4.21). �

Recall that the pair(E,∇E) is said to bereducibleif there are bundles with connections
(E1,∇E1) and(E2,∇E2) such thatE = E1 ⊕E2 and∇E = ∇E1 ⊕∇E2. The pair(E,∇E)

is said to beirreducible if it is not reducible.

Lemma 4.7. If (E,∇E) = (E1,∇E1)⊕ (E2,∇E2), then

(L,∇L,Σ) = (L1,∇L1,Σ1)⊕ (L2,∇L2,Σ2), (4.25)

whereΣ = Σ1 ∪Σ2.

Proof. The statement is clear from the definitions. Indeed, we have ker∇E = ker∇E1 ⊕
ker∇E2, so thatÊ = Ê1 ⊕ Ê2 by (3.24)and thereforeL = L1 ⊕L2. Since∇ker

E also splits
as a direct sum, it follows from(4.23)that∇L = ∇L1 ⊕∇L2. As for supports, we note that

Σ = Σ(E,
◦
∇E) = Σ1 ∪Σ2, whereΣi = Σ(Ei,

◦
∇Ei). �

Definition 4.8. The triple(L,∇L,Σ) is called theFourier–Mukai transformof (E,∇E),

andΣ = Σ(E,
◦
∇E) = suppÊ is called thespectral coveringassociated with the underlying

foliated structure(E,
◦
∇E).

4.2. The inverse transform for connections

Given(S,Σ)as inSection 3.2, let∇S be a connection onS. In order to obtain a connection
on F̂(S) = Š, recall from(3.29)that Š is defined byŠ = pΣ,∗(p̂∗

ΣS⊗ PΣ). Consider the
connection

∇̃S = p̂∗
Σ∇S ⊗ 1PΣ + 1S ⊗∇PΣ : p̂∗

ΣS⊗ PΣ → p̂∗
ΣS⊗ PΣ ⊗Ω1

ZΣ
. (4.26)

SinceΩ1
ZΣ

= p∗
ΣΩ1

M , it follows from the projection formula that

pΣ,∗(p̂∗
ΣS⊗ PΣ ⊗Ω1

ZΣ
) = Š⊗Ω1

M. (4.27)

Thus we define the connection∇Š on Š, adapted to the flat partial connection
◦
∇ Š in

Section 3.2, by

∇Š = pΣ,∗∇̃S : Š→ Š⊗Ω1
M. (4.28)
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The curvature∇2
Š

of ∇Š is computed next, from the formula

∇̃2
S = p̂∗

Σ∇2
S ⊗ 1PΣ + 1S ⊗ F|ZΣ. (4.29)

Lemma 4.9. The curvature∇2
Š

of the connection∇Š is determined by

(∇2
Š
)0,2 = 0, (∇2

Š
)2,0 = pΣ,∗(p̂∗

Σ∇2
S), (4.30)

and

(∇2
Š
)1,1 = pΣ,∗(∇2

PΣ
) = pΣ,∗(F|ZΣ). (4.31)

This implies that the connection∇Š is Poincaré basic,since the pull-back̂p∗
Σ∇S is p̂Σ-basic.

The triple(S,∇S,Σ) is reducible if there are triples(S1,∇S1,Σ1) and(S2,∇S2,Σ2),
such that we haveΣ = Σ1∪Σ2 and(S,∇S,Σ) = (S1,∇S1,Σ1)⊕(S2,∇S2,Σ2). The triple
(S,∇S,Σ) is said to be irreducible if it is not reducible. Moreover, an(m− d)-dimensional
smooth submanifoldΣ ↪→ M̂, which is ann-fold covering ofB transversal to all fibers, is
said to beproperif the trivial local system(C,d,Σ), consisting of the trivial line bundle on
Σ with the trivial flat connection, is irreducible. Clearly, ifΣ is proper, then it is connected.

Lemma 4.10. If (S,∇S,Σ) = (S1,∇S1,Σ1)⊕ (S2,∇S2,Σ2), then

(Š,∇Š) = (Š1,∇Š1
)⊕ (Š2,∇Š2

). (4.32)

Moreover, if (S,∇S,Σ) is irreducible with smooth supportΣ, thenΣ = suppS is proper.

Proof. The first statement follows easily from the definitions of the previous paragraph.
Now if Σ = suppS is not proper, then(C,d,Σ) splits as the sum(S1,∇S1,Σ1) ⊕
(S2,∇S2,Σ2), whereΣ = Σ1 ∪Σ2,Σi = suppSi. Thus

(S,∇S,Σ) = (S,∇S,Σ)⊗ (C,d,Σ)

= (S,∇S,Σ)⊗ (S1,∇S1,Σ1)⊕ (S,∇S,Σ)⊗ (S2,∇S2,Σ2)

= (S⊗ S1,∇S⊗S1,Σ1)⊕ (S⊗ S2,∇S⊗S2,Σ2),

and(S,∇S,Σ) is reducible. �

4.3. The main theorem for bundles with Poincaré basic connections

Definition 4.11. Vect∇n (M) is the category of foliated Hermitian vector bundles onM

endowed with a Poincaré basic unitary connection. Objects inVect∇n (M) are pairs(E,∇E)

consisting of a foliated Hermitian vector bundleE of rankn and a Poincaré basic unitary
connection∇E. Morphisms are bundle maps compatible with the connections.

Definition 4.12. Spec∇n (M̂) is the category ofspectral dataon M̂. Objects inSpec∇n (M̂)

are triples(S,∇S,Σ), such that the pair(S,Σ) is an object inRelSkyn(M̂) and∇S is
a connection onS|Σ. Morphisms are sheaf maps ofO

M̂
-modules compatible with the

connections.
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Theorem 4.13. The Fourier–Mukai transformF defines an additive natural equivalence
of categories

F : Vect∇(M)
∼=−→Spec∇(M̂). (4.33)

Proof. In view of the natural isomorphismsφS : S −→∼= F ◦ F̂(S), ψE : F̂ ◦ F(E) −→∼= E in the
proof of Theorem 3.7, it suffices to show that we have gauge equivalencesφ∗

S∇LŠ = ∇S
andψ∗

E∇E = ∇Ľ. We comment only on the proof for the second gauge equivalence. In

fact, our constructions ofF in Section 4.1andF̂ in Section 4.2show that∇E corresponds
to pΣ,∗(p̂∗

Σ∇̃L). �

Let Vect∇n (B) be the category of complex vector bundlesV of rankn overB with unitary
connection∇V and fix a pair(V,∇V ) ∈ Vect∇n (B). Thenπ∗(V,∇V ) = (π∗V, π∗∇V ) is an
object inVect∇n (M), while π̂∗

0(V,∇V ) is an object inSpec∇n (M̂) supported on the 0-section
Σ0 = σ0(B) ⊂ M̂. The construction ofF is again compatible with these pull-backs, that is
we have the commutative diagram similar to

(4.34)

Moreover,Corollary 3.8remains valid forF onVect∇(M).

Corollary 4.14. For (E,∇E) ∈ Vect∇(M) and (V,∇V ) ∈ Vect∇(B), the Fourier–Mukai
transformF satisfies

F(π∗(V,∇V )⊗ (E,∇E)) ∼= π̂∗
Σ(V,∇V )⊗ F(E,∇E), (4.35)

whereΣ is the support ofF(E,∇E).

Corollary 4.15. (E,∇E) ∈ Vect∇n (M) is of the form(E,∇E) = π∗(V,∇V ), for (V,∇V ) ∈
Vect∇n (B), if and only if the support of the Fourier–Mukai transformF(E,∇E) is the
0-sectionΣ0 = σ0(B) of p̂ : M̂ → B.

As a consequence ofLemmas 4.7 and 4.10andTheorem 4.13, we have the following.

Corollary 4.16. The pair(E,∇E) is irreducible, if and only if its transformF(E,∇E) is
irreducible.

For complex vector bundles(E,∇E) with unitary connection∇E, there is a well-known
reduction theorem[9, Chapter II, Theorem 7.1]based on the decomposition of the holonomy
group in U(n) into irreducible components. Our construction shows that this defines a
decomposition of(E,∇E) ∈ Vect∇(M) into irreducible components. FromTheorem 4.13
andCorollary 4.16, we obtain a similar decomposition ofF(E,∇E) in Spec∇(M̂). In the
smooth case, the irreducible pairs(E,∇E) ∈ Vect∇n (M) are characterized as follows.
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Proposition 4.17. Suppose that the spectral coveringΣ of (E,∇E) ∈ Vect∇n (M) is smooth.
Then the pair(E,∇E) is irreducible, if and only if its transform(L,∇L,Σ) = F(E,∇E)

satisfies the following conditions: Σ is connected, |Σb| ≡  on B for some|n, and(L,∇L)
is a vector bundle of rankk = n/ with irreducible holonomy. The coverinĝπΣ : Σ → B

is non-degenerate exactly for = n, k = 1. In addition, any smooth, connected spectral
manifoldΣ ↪→ M̂ is proper.

Proof. This is a consequence ofCorollary 4.16and the remarks followingProposition
3.4. �

From Example 4.3, we have the following characterization of locally trivial families

(E,
◦
∇E) of flat bundles along the fibers.

Corollary 4.18. The Fourier–Mukai transformF defines an equivalence between pairs
(E,∇E) ∈ Vect∇n (M), such that(E,

◦
∇E) is a locally trivial family of flat bundles along the

fibers and∇E is basic; and spectral data(S,∇S,Σ) ∈ Spec∇n (M̂), such that the spectral
coveringΣ ⊂ M̂ is locally constant andS has locally constant rank onΣ.

Combining this withProposition 4.17, we obtain in addition the following.

Corollary 4.19. (E,∇E) ∈ Vect∇n (M) as in Corollary 4.18is irreducible, if and only if
the spectral coveringΣ is a leaf of the transversal foliation̂F in (3.17), |Σb| ≡  on B for
some|n, π1(B, b) acts transitively onΣb = Σ∩ T̂b and(L,∇L) is a vector bundle of rank
k = n/ with irreducible holonomy.

FromExample 4.4, in particular formula(4.17), we have the following characterization
of foliated line bundles onM.

Corollary 4.20. The Fourier–Mukai transformF defines a multiplicative equivalence be-
tween pairs(E,∇E) ∈ Vect∇1 (M) and spectral data(S,∇S,Σ) ∈ Spec∇1 (M̂), whereS is
a complex line bundle with connection∇S on the spectral sectionΣ = σ(B).

5. Applications and examples

Let us now apply our theorems to a few interesting examples. We are particularly inter-
ested in seeing how differential conditions on the connection∇E are transformed.

5.1. Local systems and the representation variety

As a first example, we now look at the action of the Fourier–Mukai transform in the
subcategoryLocn(M) of unitary local systems of rankn on M. So letE → M be a
complex Hermitian vector bundle of rankn and take∇E to be a flat unitary connection
onE.
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Lemma 5.1. If ∇E is flat, then the spectral coveringΣ ↪→ M̂ of(E,
◦
∇E) is locally constant,

the rank ofL is locally constant onΣ and the transform∇L is also flat.

Proof. This follows from (4.24), observing that a flat connection is basic with locally
constant spectral coveringΣ ↪→ M̂ and henceF|ZΣ = 0 (compareExample 4.3). �

Next, we argue that the inverse transform also preserves flatness, provided the spectral
coveringΣ ↪→ M̂ is locally constant.

Lemma 5.2. If the spectral coveringΣ ↪→ M̂ is locally constant and∇S is flat, then its
transform∇Š is also flat.

Proof. Firstly, the assumption on the spectral covering implies that∇2
P|ZΣ = F|ZΣ = 0.

Since∇S is flat, the Lemma follows from(4.29)or Lemma 4.9. �

With these facts in mind, we introduce the following definition.

Definition 5.3. SpecLocn(M̂) is the full subcategory ofSpec∇n (M̂) consisting of those
objects(S,∇S,Σ) such that the spectral coveringΣ ↪→ M̂ and the rank ofS on Σ are
locally constant, and∇S is flat.

As a consequence ofTheorem 4.13andLemmas 5.1 and 5.2, we obtain the following
theorem.

Theorem 5.4. The Fourier–Mukai transformF defines a natural equivalence of categories

F : Locn(M)
∼=−→SpecLocn(M̂).

For unitary local systems onM, the decomposition into irreducible components in
Section 4.3applies mutatis mutandis and we may sharpenCorollary 4.19accordingly,
usingTheorem 5.4.

Corollary 5.5. (E,∇E) ∈ Locn(M) is irreducible, if and only if the spectral coveringΣ
is a leaf of the transversal foliation̂F in (3.7), |Σb| ≡  on B for some|n, π1(B, b) acts
transitively onΣb and(L,∇L) is an irreducible flat vector bundle of rankk = n/, that is
an irreducibleU(k)-local system onΣ.

Now letRM(n) denote the moduli space of irreducible unitary local systems of rank
n ≥ 1 onM. Recall thatRM(n) coincides with therepresentation varietyof π1(M), that
is, the set of all irreducible representationsπ1(M) → U(n) modulo conjugation. Let also
S(n) denote the set of all connected, locally constant(m − d)-dimensional submanifolds
Σ ↪→ M̂ (modulo isomorphisms), such that the trivial local system(C,d,Σ) is a relative
skyscraper of length for |n, that is

(C,d,Σ) ∈ SpecLoc(M̂). (5.1)
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Then(5.1) implies that|Σb| ≡  on B, since the multiplicity of this system is 1. From
Example 4.3andCorollary 5.5, we see thatΣ ↪→ M̂ is a (proper)-sheeted leaf of the
transverse foliation̂F on π̂ : M̂ → B determined by(3.7), with transitive transversal
holonomy of order. For given|n, we denote the corresponding subset ofS(n) by S(n).
We will see that thegenericelements ofS(n) are those inS(n)n and we proceed with an
explicit parametrization of these moduli spaces.

The transverse foliation̂F on π̂ : M̂ → B provides the link between our geometric
setup and the representation theory and we refer again toExample 4.3andCorollary 5.5
for the discussion to follow. Recall that the leaves ofF̂ are the imageŝFξ of the level
setsB̃ × {ξ} in (3.7) and are therefore covering spaces overB of the formF̂ξ

∼= B̃/Γρ,ξ,
whereΓρ,ξ ⊂ π1(B, b) is the isotropy group atξ ∈ T̂b under the action corresponding
to ρ∗ : π1(B) → Aut(T̂ ). Here we fix a basepointb ∈ B once and for all. It is now
clear that the structure of the spacesS(n), respectivelyS(n) may be described in terms
of the transversal holonomy groupoid on the complete transversalT̂ and the leaf space of
F̂. The leaf space of̂F is the quotientπ1(B) \ T̂ , which may behave quite badly. But for
our purposes, we need only consider the invariant subspaceT̂fin ⊂ T̂ defined by theξ ∈ T̂

satisfying [Γρ,ξ : π1(B)] < ∞, that is the leaves with finite transversal holonomy, on which
theπ1(B)-orbits are finite by definition.̂Tfin has an invariant relatively closedstratification
T̂n−1 ⊂ T̂n ⊂ · · · , given by the pointsξ ∈ T̂fin satisfying [Γρ,ξ : π1(B)] ≤ n. The main
stratum inT̂n is then given by the invariant relatively open setT̂ n ⊂ T̂n of those pointsξ for
which [Γρ,ξ : π1(B)] = n. Here we have tacitly used the ‘semicontinuity’ for the isotropy
groups of a smooth group action, that is [Γρ,ξ : π1(B)] ≥ n is an open condition and hence
[Γρ,ξ : π1(B)] ≤ n is a closed condition.

For the genericΣ ∈ S(n)n, we haveΣ = F̂ξ
∼= B̃/Γρ,ξ, where the isotropy group

Γρ,ξ ⊂ π1(B, b) has indexn andΣb = Σ ∩ T̂b corresponds to an orbit (of ordern) in the
main stratumT̂ n. For  < n, |n andΣ ∈ S(n), we haveΣ = F̂ξ

∼= B̃/Γρ,ξ, where the
isotropy groupΓρ,ξ ⊂ π1(B, b) has index andΣb corresponds to the orbit (of order) of
a limit element ofT̂ n in T̂  ⊂ T̂n−1 = T̂n \ T̂ n.

Theorem 5.6. The spaceS(n) of spectral manifolds associated to irreducibleU(n)-rep-
resentations inRM(n) is of the form

S(n) = S(n)n ∪



|n⋃
<n

S(n)


 , (5.2)

and is parametrized(up to automorphisms) by

π1(B) \

T̂ n ∪




|n⋃
<n

T̂ 





 ⊂ π1(B) \ T̂n, (5.3)

that is the space of leaves ofF̂ with finite transversal holonomy of order with |n. The
mapping

Ψ(n) : RM(n) → S(n), (5.4)
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defined byΨ(n)(E,∇E) = suppF(E,∇E) = Σ, has the following properties:

(1) The generic partΨ(n)n = Ψ(n)|RM(n)n : RM(n)n → S(n)n is surjective, where
RM(n)n = Ψ(n)−1S(n)n is the space of irreducible representations for which the
induced fiber holonomy representations{ξ1, . . . , ξn}, ξj ∈ T̂ ∼= HomZ(Λ,U(1)) of Λ
consist of n distinct elements. The fiberΨ(n)−1(Σ)over the generic elementsΣ ∈ S(n)n
corresponds exactly to theU(1)-local systems onΣ under the functorF.

(2) The fiberΨ(n)−1(Σ) for Σ ∈ S(n),  < n, corresponds to(equivalence classes of)
irreducibleU(k)-local systems onΣ for k = n/ under the functorF.

An extreme situation occurs in the context ofCorollary 4.15. In this case, the irreducible
flat vector bundle(E,∇E) is the pull-back of an irreducible flat vector bundle(V,∇V ) on
the baseB, determined by an irreducible U(n)-representation ofπ1(B). We have = 1,
k = n, Σ is the 0-sectionΣ0 = σ0(B) of π̂ : M̂ → B and the corresponding orbit is given
by the origin 0∈ T̂ 1.

Proof. The structure ofS(n) follows from the description preceding the theorem. From
Corollary 5.5we see thatΨ(n)(E,∇E) = suppF(E,∇E) belongs toS(n). To see thatΨ(n)n

is surjective onRM(n)n, takeΣ ∈ S(n)n and let(C,d) be the trivial U(1)-local system
on Σ. SinceΣ is proper,(C,d,Σ) is irreducible and(C,d,Σ) ∈ SpecLocn(M̂) implies
thatΣ ∈ S(n)n satisfies|Σb| ≡ n. Then it follows fromCorollary 4.16andTheorem 5.4
that F̂(C,d,Σ) is an irreducible U(n)-local system onM and defines a point inRM(n)n

mapping toΣ underΨ(n)n. The statements about the fibers ofΨ(n) in (1) and (2) also
follow from Corollary 5.5, that is(E,∇E) ∈ Ψ(n)−1(Σ), if and only if F(E,∇E) is an
irreducible U(k)-local system onΣ ∈ S(n), for |n, k = n/. �

For the corresponding irreducible U(n)-representations, we recall that the induced fiber
holonomy representations{ξ1, . . . , ξn}, ξj ∈ T̂ ∼= HomZ(Λ,U(1)) of Λ consist generically
of n distinct elements, that is they are orbits of ordern of the actionρ∗ : π1(B) →
Aut(T̂ ) ∼= Aut(Λ). How does one then describe the irreducible U(n)-representation of
π1(M) in Ψ(n)−1(Σ) ⊂ RM(n)n associated to a U(1)-local system(S,∇S,Σ) for Σ ∈
S(n)n, or more generally to any irreducible U(k)-local system(S,∇S,Σ) for Σ ∈ S(n)
via F̂? We claim that the irreducible U(n)-representations of the crossed product(3.4) for
π1(M) are obtained by theinduced representationfrom irreducible U(k)-representations on
a subgroup of indexwith |n inπ1(M) to the full group. In fact fork = n/, any U(k)-local
systemS on Σ is determined by a homomorphismη : π1(Σ, ξ) ∼= Γρ,ξ → U(k), which
together with the above datumξ ∈ T̂  defines an irreducible unitary representation

(exp(ξ), η) : Λ×ρ∗ Γρ,ξ → U(k), (5.5)

that is a U(k)-representation on a subgroup of index in the crossed productπ1(M) =
Λ ×ρ∗ π1(B). We need to verify exp(ξ)(ρ∗(γ)(a)) = η(γ)exp(ξ)(a)η(γ)−1 = exp(ξ)(a),
a ∈ Λ, γ ∈ Γρ,ξ, which is obvious, since U(1) is identified with the center of U(k) andΓρ,ξ

fixesξ underρ∗.
Looking at the construction of the inverse Fourier–Mukai transformF̂, in particular the

push-down operationpΣ,∗ for the -fold covering mappΣ : ZΣ → M, we see that the
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irreducible U(n)-representation ofπ1(M) in Theorem 5.6, given byF̂(Sη,∇Sη ,Σ) of the
U(k)-local system(Sη,∇Sη) on Σ defined byη, is in fact the induced representation of
(exp(ξ), η).

For the generic case = n, k = 1, that is(C,d,Σ) ∈ SpecLocn(M̂), the index of
Γρ,ξ ⊂ π1(B) isn and the unitary local systems onΣ are 1-dimensional. It then follows also
that the irreducible U(n)-representation ofπ1(M) associated to(EΣ,∇EΣ) = F̂(C,d,Σ)

corresponds to the induced representation of(exp(ξ),1), that is the trivial representation
η = 1 of Γρ,ξ.

In summary, the following theorem is the algebraic version ofTheorem 5.6, given purely
in terms of representation theory.

Theorem 5.7. For the torus bundleπ : M → B in (3.1), the representation varietyRM(n)

of the fundamental groupπ1(M), given by the crossed product(3.4) with respect to the
actionρ : π1(B) → Aut(T) ∼= GL(d,Z), is parametrized by the following data:

(1) Elements[ξ] ∈ π1(B) \ T̂ , for |n, that is orbits of order in the dual torusT̂ under
the induced actionρ∗ : π1(B) → Aut(T̂ ).

(2) Irreducible unitary representationsη : Γρ,ξ → U(k) of the isotropy groupΓρ,ξ ⊂
π1(B) of index at ξ ∈ T̂ , for k = n/.

These data determine an irreducibleU(n)-representation ofπ1(M) by the induced repre-
sentation of(exp(ξ), η) : Λ ×ρ∗ Γρ,ξ → U(k) from the subgroup of index in the crossed
productπ1(M).

This induction corresponds to the functorF̂. The generic case occurs forξ ∈ π1(B)\ T̂ n,
that is = n, k = 1 and the induction process yields the elements inRM(n)n in this case.

So far, we have not made any assumptions which guarantee non-trivial examples, but there
is no doubt that there are many such situations, e.g. whenρ : π1(B) → Aut(T) ∼= GL(d,Z)

is surjective,ρ : π1(Bg) → Aut(T 2) ∼= GL(2,Z), whereBg is an oriented surface of genus
g > 1, orπ1(B) finite, etc.

Remark 5.8. Degeneracy properties for the varietyS(n) and the representation variety
RM(n):

(1) The parametrization(5.3)of S(n) is not closed inπ1(B)\ T̂n. At the limit points in(5.3)
corresponding toS(n),  < n, the action ofπ1(B) is still transitive, even though the
orbit degenerates and the corresponding representations ofπ1(M) are still irreducible.
We denote byS(n) the set of all(m−d)-dimensional submanifoldsΣ ↪→ M̂ which are
a finite union of leaves of the foliation̂F, whose transversal holonomy is of order≤ n

(modulo transversal automorphisms ofF̂). In a precise sense,S(n) corresponds to the
closure ofπ1(B)\T̂ n in the orbit spaceπ1(B)\T̂n of leaves with finite holonomy of order
≤ n. The generic elementsS(n)n correspond to the open, dense subsetπ1(B) \ T̂ n ⊂
π1(B) \ T̂ n ⊂ π1(B) \ T̂n.

(2) At a limit point of π1(B) \ T̂ n in π1(B) \ T̂n−1 = π1(B) \ (T̂n \ T̂ n), the action of
the holonomy group will generally fail to be transitive, the orbit structure degenerates,
the index drops and we end up with a finite number of orbits, sayki times an orbit
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of orderi, such that
∑

i kii = n. Geometrically, this means that then-fold covering
(leaf) π̂Σ : Σ → B collapses under this limiting process toi-fold coverings (leaves)
π̂Σi : Σi → B of multiplicity ki, satisfying the above relation. The ‘degeneracy’
condition forΣ ∈ S(n) ⊂ S(n) at the limit is then of the form

(C,d,Σ) �→ ⊕
i
ki(C,d,Σi),

ki(C,d,Σi) = (Cki ,d,Σi) ∈ SpecLoci (M̂),
∑
i

kii = n. (5.6)

(3) The limit degeneracy of the spectral coveringΣ corresponds of course to the degeneracy
of the representations{ξ1, . . . , ξn}ofΛ. In fact, with multiple holonomy representations
in the limit, the action of the holonomy group will generally fail to be transitive, the
orbit structure will degenerate, the index will fall and the representation will decompose
into sums ofki times an irreducible representations of ranki, such that

∑
i kii = n.

(4) The spaceRM(n) of irreducible U(n)-representations may be completed as well by
adding (sums of) irreducible representations of lower rank, as described above. This is
similar to the completion of stable bundles to include semistable bundles. ThenΨ(n)

extends by continuity to a surjective mapping

Ψ(n) : RM(n) → S(n). (5.7)

Theorem 5.6(1) remains valid on the generic (open dense) subsetRM(n)n, but on the
boundary ofS(n) the structure of the fibers ofΨ(n) is more complicated, in accordance
with Theorem 5.6(2) and the previous remarks.

Remark 5.9. Structure of the representation varietyRM(n): Theorem 5.6(1) means that
the representation variety of a torus bundleπ : M → B resembles generically anintegrable
system, that is a fibration by abelian groups. It would be very interesting to determine
the conditions under whichRM(n) is a symplectic manifold, with the fibers ofΨ(n) :
RM(n) → S(n) being Lagrangian overS(n)n.

5.2. Instantons onT 1-fibered 4-manifolds

Here we consider the casem = 4,d = 1, and takegM = gT(π)⊕π∗gB to be a bundle-like
Riemannian metric onM with respect to the fiber space(3.1)and the exact sequence(3.5).
AssumingM to be oriented,gM induces a splitting of the bundle of 2-forms onM into
self-dual (SD) and anti-self-dual (ASD) 2-forms under the Hodge operator∗:

Ω2
M = Ω+

M ⊕Ω−
M. (5.8)

From(4.1)we also have the decomposition

Ω2
M

∼= Ω
2,0
M ⊕Ω

1,1
M = π∗Ω2

B ⊕ π∗Ω1
B ⊗Ω1

M/B. (5.9)

SincegM is bundle-like, the Hodge operator exchanges the summands in(5.9)and therefore
a 2-formω = (ω2,0, ω1,1) satisfies∗ω = ±ω if and only if

∗ω = (∗ω1,1, ∗ω2,0) = ±(ω2,0, ω1,1) = ±ω, (5.10)
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that is∗ω1,1 = ±ω2,0 or equivalently∗ω2,0 = ±ω1,1, so that the projectionsΩ2
M → Ω

2,0
M

andΩ2
M → Ω

1,1
M induce isomorphisms

Ω±
M

∼=−→Ω
2,0
M , Ω±

M

∼=−→Ω
1,1
M .

Given a Hermitian vector bundleE with unitary connection∇E over M, recall that∇E

is said to be SD (respectively ASD) if its curvature∇2
E is SD (respectively ASD) as a

Ends(E)-valued 2-form, that is

∗∇2
E = ±∇2

E, (5.11)

which by(5.10)is equivalent to

(∇2
E)

2,0 = ± ∗ (∇2
E)

1,1. (5.12)

Now ZΣ is 4-dimensional and the metricp∗
ΣgM prescribes a Riemannian ramified cov-

ering (ZΣ, p∗
ΣgM) → (M, gM). The pull-backp∗

Σ defines decompositions like(5.8) and
(5.9)onZΣ relative to the pull-back fiber bundlêpΣ : ZΣ → M̂. Using(4.6), we see that
the (A)SDEq. (5.12)onZΣ can be written as

j̃∗(∇̃2
E)

2,0 = p∗
Σ(∇2

E)
2,0 = ±p∗

Σ(∗(∇2
E)

1,1) = ± ∗Σ p∗
Σ(∇2

E)
1,1. (5.13)

Suppose now that the adapted unitary connection∇E is in addition Poincaré basic. Then
we have from(5.13) and (4.18)

j̃∗(∇̃2
E)

2,0 = p∗
Σ(∇2

E)
2,0 = ± ∗Σ (F|ZΣ). (5.14)

In the following lemma we use the functorF : Vect∇n (M) → Spec∇n (M̂) to transform an
instanton(E,∇E) onM to the corresponding spectral data(L,∇L,Σ).

Lemma 5.10. Suppose that the Poincaré basic unitary connection∇E is (A)SD. Then we
have

p∗
Σ(∇2

E)
2,0 = ± ∗Σ (F|ZΣ). (5.15)

Further, the scalar(2,0)-form ω̂ = ∗Σ(F|ZΣ) is harmonic and in particular̂pΣ-basic,
that isω̂ = p̂∗

Σω. The curvature∇2
L of the transformed connection∇L is then given by

∇2
L = ±R1p̂Σ,∗(ω̂) = ±ω. (5.16)

Proof. We need to show that̂ω is harmonic. Sincẽj∗(∇̃2
E)

0,2 = j̃∗(∇̃2
E)

1,1 = 0 by assump-
tion, we havẽj∗∇̃2

E = j̃∗(∇̃2
E)

2,0 = p∗
Σ(∇2

E)
2,0. Computing traces and using(5.14), we

obtain

j̃∗ Tr ∇̃2
E = ±n ∗Σ (F|ZΣ). (5.17)

Since the first Chern polynomial Tr̃∇2
E is closed, we see from(5.17)that

dω̂ = d ∗Σ (F|ZΣ) = 0. (5.18)

As dF = d∇2
P = 0 from(3.13), it follows thatF|ZΣ must be aharmonic2-form with respect

to the bundle-like metricgΣ = p∗
ΣgM onZΣ. Sinceω̂ = ∗Σ(F|ZΣ) is of type(2,0), we



J.F. Glazebrook et al. / Journal of Geometry and Physics 50 (2004) 360–392 387

have alsoiXω̂ = 0, for any vector fieldX in T(p̂Σ) and thereforeLXω̂ = iX dω̂ = 0;
in other words,ω̂ is in addition ap̂Σ-basic form and sôω = p̂∗

Σω, for a unique closed
2-formω onΣ. Eq. (5.16)follows then from(4.24). In fact, we have∇2

L = ±R1p̂Σ,∗(ω̂) =
±R1p̂Σ,∗(p̂∗

Σω) = ±ω. �

Note that the curvature termp∗
Σ(∇2

E)
2,0 must be independent of the choice of the con-

nection∇E, sinceF|ZΣ depends only on the foliated structure(E,
◦
∇E). Moreover, the

curvature termp∗
Σ(∇2

E)
2,0 must also be scalar-valued (i.e. assume values in the center of

p∗
Σ Ends(E)), for F is scalar-valued.

Theorem 5.11. Assume that there exists a bundle-like metricgM with respect to which the
form ω̂ = ∗Σ(F|ZΣ) is harmonic. The functorsF and F̂ induce an equivalence between
the following objects:

(1) Foliated Hermitian vector bundles(E,∇E) ∈ Vect∇n (M) with Poincaré basic unitary
connections∇E, satisfying the(A)SD-Eq. (5.12).

(2) Relative skyscrapers(S,∇S,Σ) in Spec∇n (M̂), such that the curvature∇2
S of the con-

nection∇S satisfies

∇2
S = ±ω. (5.19)

The harmonicity condition(5.18)for the curvatureF|ZΣ of the connection∇P onPΣ

depends only on the foliated structure(E,
◦
∇E)and the bundle-like metricgM and is therefore

an a priori obstruction for the existence of Poincaré basic instantons, that is solutions of
Eq. (5.12), respectively(5.15).

Proof. This follows from combiningLemma 5.10with Theorem 4.13. �

Finally, we analyze the properties of the parameter spaces for the various structures for
a fixed foliated vector bundle(E,

◦
∇E). For two adapted connections∇E, ∇′

E, we have

∇′
E = ∇E + ϕ, whereϕ ∈ C∞(M,Ends(E)⊗Ω

1,0
M ), that is the adapted connections form

an affine space modeled on the linear spaceC∞(M,Ends(E)⊗Ω
1,0
M ). For∇′

E = ∇E + ϕ,
we have also

(∇′2
E )1,1 = (∇2

E)
1,1 + ◦

∇E(ϕ). (5.20)

Therefore if∇E is basic, then the curvature term(∇2
E)

1,1 vanishes and∇′
E = ∇E + ϕ is

basic if and only if
◦
∇E(ϕ) = 0. Thus the space of basic connections is either empty or else

an affine space modeled on the linear space of
◦
∇-parallel sections in Ends(E)⊗Ω

1,0
M .

Now if ∇E is Poincaré basic, then the curvature term̃j∗(∇̃2
E)

1,1 = 0 andp∗
Σ(∇2

E)
1,1 is

fixed by(4.18). Then∇′
E = ∇E + ϕ is Poincaré basic, if and only ifp∗

Σ

◦
∇E(ϕ) = 0 onZΣ

which is equivalent to
◦
∇E(ϕ) = 0. Thus the space of Poincaré basic connections onE is an

affine space modeled also on the linear space of
◦
∇-parallel sections in Ends(E)⊗Ω

1,0
M .
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For the instantons in thisSection 5.2, the curvature term̃j∗(∇̃2
E)

2,0 is also fixed by(5.14)
and∇′

E = ∇E+ϕ satisfies the instantonEq. (5.14), if and only if in addition to the previous
condition, the parameterϕ satisfies the quadratic PDE

∇E(ϕ)+ 1
2[ϕ, ϕ] = 0. (5.21)

Here the Lie bracket is taken in the adjoint bundle Ends(E). Note that the expressions in

(5.21)are of type(2,0), since we already have
◦
∇E(ϕ) = 0 from (2).

5.3. Monopoles onT 1-fibered 3-manifolds

We keep the assumptions and notation of the previousSection 5.2, but now we take
m = 3, d = 1. The Hodge operator given by the bundle-like metricgM transforms now

∗ : Ω2,0
M

∼=−→Ω
0,1
M , ∗ : Ω1,1

M

∼=−→Ω
1,0
M .

Given a Hermitian vector bundleE with unitary connection∇E overM, we consider the
corresponding connection formA on the unitary frame bundleFU(E) with curvature form
FA.

The (A)SD equation is now replaced by themonopoleequation relative to a Higgs field
φ in Ends(E).

∗FA = DAφ = dφ + [A, φ], (5.22)

or in terms of the corresponding unitary connection∇E

∗∇2
E = ∇E(φ). (5.23)

The type-decomposition of(5.22), respectively(5.23)is then given by

∗F2,0
A = D

0,1
A φ = d0,1φ + [A0,1, φ], ∗F1,1

A = D
1,0
A φ = d1,0φ + [A1,0, φ],

(5.24)

or in terms of the corresponding unitary connection∇E

∗(∇2
E)

2,0 = ◦
∇E(φ), ∗(∇2

E)
1,1 = ∇1,0

E (φ). (5.25)

Now ZΣ is 3-dimensional and the metricp∗
ΣgM prescribes a Riemannian ramified cov-

ering(ZΣ, p∗
ΣgM) → (M, gM). From(5.25)it follows that the monopoleequations (5.25)

for the pair(A, φ), respectively(∇E, φ) onM are now expressed onZΣ by

∗ΣpΣ(∇2
E)

2,0 = p∗
Σ

◦
∇E(φ), ∗Σp∗

Σ(∇2
E)

1,1 = ∇ t
E(p

∗
Σφ) = p∗

Σ∇1,0
E (φ). (5.26)

In order to proceed with the reduction toΣ, we need to assume that the Higgs fieldφ is

parallel along the fibers, that is
◦
∇E(φ) = 0. By (5.25), this is equivalent to(∇2

E)
2,0 = 0.

Therefore we restrict attention to special solutions of the monopoleequations (5.25), namely

(∇2
E)

2,0 = 0,
◦
∇E(φ) = 0, ∗(∇2

E)
1,1 = ∇1,0

E (φ). (5.27)



J.F. Glazebrook et al. / Journal of Geometry and Physics 50 (2004) 360–392 389

Suppose again that the adapted unitary connection∇E is in addition Poincaré basic. Then
we havẽj∗(∇̃2

E)
1,1 = p∗

Σ(∇2
E)

1,1 − F|ZΣ = 0 and therefore the connectionj̃∗∇̃E must be
flat byLemma 4.1. OnZΣ, the monopoleequations (5.27)are now given by

(∇2
E)

2,0 = 0,
◦
∇E(φ) = 0, ∇ t

E(p
∗
Σφ) = p∗

Σ∇1,0
E (φ) = ∗Σ(F|ZΣ). (5.28)

Observe that the second equation is of type(1,0). From(5.28)and the vanishing of the
commutatorΞ in (4.20), it follows that the scalar(1,0)-form ω̂ = ∗Σ(F|ZΣ) is closed
along the fibers, that is

d◦∇ ω̂ = d◦∇ (∗Σ(F|ZΣ)) = 0. (5.29)

From the first equation in(5.27) and (4.6), we see that(∇ t
E)

2 = 0 and therefore(5.28)
implies that

∇ t
Eω̂ = ∇ t

E(∗Σ(F|ZΣ)) = 0. (5.30)

As ω̂ is scalar-valued,(5.29) and (5.30)are equivalent to

d ∗Σ (F|ZΣ)) = dω̂ = ∇Eω̂ = 0. (5.31)

It follows that the(1,1)-form F|ZΣ is harmonic, since dF = 0 from(3.13).
As was the case for instantons inSection 5.2, the harmonicity of the curvatureF|ZΣ of

the connection∇P onPΣ is a necessary condition for the existence of solutions of(5.27),

depending only on the foliated structure(E,
◦
∇E) and the bundle-like metricgM .

In the following Lemma we use again the functorF : Vect∇n (M) → Spec∇n (M̂) to
transform a monopole(E,∇E, φ) onM to the corresponding spectral data(L,∇L,Σ).

Lemma 5.12. Suppose that the Poincaré basic unitary connection∇E and the Higgs fieldφ
satisfy the monopoleEq. (5.27). Then the transformed connection∇L is flat, that is∇2

L = 0.
Further, the scalar(1,0)-form ω̂ = ∗Σ(F|ZΣ) is harmonic and in particular̂pΣ-basic,
that isω̂ = p̂∗

Σω. Settingφ̄ = R1p̂Σ,∗(φK), the second equation in(5.28)transforms then
into the equation

∇Lφ̄ = ∇LR1p̂Σ,∗(φK) = R1p̂Σ,∗(ω̂) = ω. (5.32)

Proof. Recall that∇L is defined in(4.23)by

∇L = R1p̂Σ,∗(∇ker
E ) : L→ L⊗Ω1

Σ,

whereL = R1p̂Σ,∗(K). The flatness of∇L follows from (4.24), since(∇2
E)

2,0 = 0. From◦
∇E(φ) = 0 it follows thatp∗

Σφ preserves the sheafK. Thusφ induces an endomorphism
φK = p∗

Σφ|K : K→ Kand∇ t
E determines the homomorphism∇ker

E φK : K→ K⊗p̂∗
ΣΩ1

Σ,
by the usual formula∇ker

E (φK) = ∇ker
E ◦ φK − (φK ⊗ 1) ◦ ∇ker

E . Using(5.29), we may now
rewrite the second equation in(5.28)as∇ker

E (φK) = ω̂. Thus by(4.23), this transforms into
the equation

∇LR1p̂Σ,∗(φK) = R1p̂Σ,∗(ω̂). (5.33)

As already noted, the form̂ω is harmonic by(5.31). Sinceω̂ is of type (1,0), we have
alsoiXω̂ = 0, for any vector fieldX in T(p̂Σ) and therefore from(5.29)LXω̂ = iX dω̂ =
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iX d◦∇ ω̂ = 0; in other words,ω̂ is in addition ap̂Σ-basic form and sôω = p̂∗
Σω, for a

unique closed 2-formω on Σ. Hence∇LR1p̂Σ,∗(φK) = ω from (5.33). The fact thatω,
henceω̂ = p̂∗

Σω are closed follows of course also from the flatness of∇L, since we have
0 = ∇2

LR
1p̂Σ,∗(φK) = dω. �

Theorem 5.13. The functorsF andF̂ induce an equivalence between the following objects:

(1) Foliated Hermitian vector bundles(E,∇E) ∈ Vect∇n (M) with Poincaré basic unitary

connections∇E and
◦
∇-parallel Higgs fieldsφ in Ends(E), satisfying the monopole

equations(5.27).
(2) Relative skyscrapers(S,∇S,Σ) ∈ Spec∇n (M̂), such that∇S is flat, and Higgs fieldsφS

in End(S ), satisfying

∇SφS = ω. (5.34)

Proof. This follows fromLemma 5.12combined withTheorem 4.13. �

To conclude, let us analyze the properties of the parameter space of monopoles(∇E, φ)

for afixedfoliated vector bundle(E,
◦
∇E). For two Poincaré basic connections∇E, ∇′

E, we

have again∇′
E = ∇E + ϕ, whereϕ ∈ C∞(M,Ends(E)⊗Ω

1,0
M ), satisfies

◦
∇E(ϕ) = 0 as in

the remarks at the end ofSection 5.2. For the monopoles in thisSection 5.3, the curvature
termj̃∗(∇̃2

E) = 0. Hence∇′
E = ∇E+ϕ satisfies the monopoleequations (5.27), if and only

if ϕ satisfies the quadratic PDE

∇E(ϕ)+ 1
2[ϕ, ϕ] = 0. (5.35)

Note that the expressions in(5.35)are of type(2,0), since we already have
◦
∇E(ϕ) = 0. Thus

the parameter space for the monopoles is the same as for the instantons (compare(5.21)).
The monopoleequations (5.27)are linear in the Higgs fieldsφ. Thereforeφ′ also satisfies
(5.27), respectively(5.28), if and only ifφ′ = φ+ψ, whereψ ∈ C∞(M,Ends(E)) satisfies

∇E(ψ) = 0. (5.36)
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Appendix A. DeRham complexes along the fibers

Throughout this paper we made use of the fiberwise DeRham complex relative to a fiber
bundleπ : M → B. This complex is well known from foliation theory; in our context is
extensively used in[3,4].
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For any foliated vector bundle(E,
◦
∇E) onM, there is a fiberwise DeRham complex of

sheaves

0→ker
◦
∇E ⊗ π∗Ωu

B

ε−→E ⊗Ω
u,0
M

d◦∇−→E ⊗Ω
u,1
M

d◦∇−→E ⊗Ω
u,2
M

d◦∇−→ · · · d◦∇−→E ⊗Ω
u,d
M ,

(A.1)

which is a fine resolution of the sheaf of
◦
∇-parallel sections inE ⊗ Ω

u,0
M . Therefore the

sheavesE ⊗ Ω
u,∗
M arep∗-acyclic and alsoΓ(M, )-acyclic for the global section functor

Γ(M, ), that is the derived direct imagesRjπ∗(E ⊗ Ω
u,∗
M ) = 0, j > 0. It follows that the

higher direct images of ker(
◦
∇E) ⊗ π∗Ωu

B can be computed from the fine resolution(A.1)
and the projection formula by

Rjπ∗(ker
◦
∇E ⊗ π∗Ωu

B)
∼= Rjπ∗(ker

◦
∇E)⊗Ωu

B
∼= Hj(π∗(E ⊗Ω0,∗, d◦∇))⊗Ωu

B.

(A.2)

Likewise, the global fiberwise cohomology is given by

H
u,j
π (M,E) ≡ Hj(M, ker

◦
∇E ⊗ π∗Ωu

B)
∼= Hj(Γ(M,E ⊗Ωu,∗), d◦∇ ). (A.3)

The two cohomologies are linked by the convergent Leray spectral sequence

E
i,j

2 = Hi(B,Rjπ∗(ker
◦
∇E)⊗Ωu

B) ⇒ Hi+j(M, ker
◦
∇E ⊗ π∗Ωu

B), (A.4)

with edge homomorphisms

E
j,0
2 = Hj(B, π∗(ker

◦
∇E)⊗Ωu

B) → Hj(M, ker
◦
∇E ⊗ π∗Ωu

B) → E
0,j
2

= Rjπ∗(ker
◦
∇E ⊗ π∗Ωu

B), (A.5)

where we setRjπ∗(·) = Γ(B,Rjπ∗(·)) for the global sections inRjπ∗(·). In our context
of torus fiber bundles, we encounter vanishing conditions, leading to degeneracy conditions

for the spectral sequence. IfRjπ∗(ker
◦
∇E) = 0, 0 < j ≤ d, the non-zero terms are

determined by edge isomorphisms

E
j,0
2 = Hj(B, π∗(ker

◦
∇E)⊗Ωu

B)
∼=−→Hj(M, ker

◦
∇E ⊗ π∗Ωu

B), j ≥ 0. (A.6)

If Rjπ∗(ker
◦
∇E) = 0, 0≤ j < d, the non-zero terms are determined by edge isomorphisms

Hd+j(M, ker
◦
∇E ⊗ π∗Ωu

B)
∼=−→E

j,d

2 = Hj(B,Rdπ∗(ker
◦
∇E)⊗Ωu

B), j ≥ 0. (A.7)

In particular, we have forj = 0:

Hd(M, ker
◦
∇E ⊗ π∗Ωu

B)
∼=−→E

0,d
2 = Γ(B,Rdπ∗(ker

◦
∇E)⊗Ωu

B)

= Rdπ∗(ker
◦
∇E ⊗ π∗Ωu

B). (A.8)

The previous discussion of basic connections inSection 4.1could have been formulated
in terms of this fiberwise resolution (and its global cohomology) with coefficients in the
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foliated adjoint vector bundle Ends(E). Specifically, the mixed curvature term(∇2
E)

1,1 of an

adapted connection∇E for (E,
◦
∇E) satisfiesd◦∇(∇2

E)
1,1 = 0 and for∇′

E = ∇E + ϕ, ϕ ∈
Γ(M,Ends(E)⊗Ω

1,0
M ), we have from

(∇′2
E )1,1 = (∇2

E)
1,1 + ◦

∇E(ϕ) = (∇2
E)

1,1 + d◦∇ϕ.

Thus(∇2
E)

1,1 defines a cohomology class

a(E,
◦
∇E) = [(∇2

E)
1,1] ∈ H1,1

π (M,Ends(E)) = H1(Γ(M,Ends(E)⊗Ω1,∗, d◦∇)),

(A.9)

depending only on the foliated vector bundle(E,
◦
∇E). This class is very similar to the

Atiyah class in the theory of holomorphic vector bundles, where it obstructs the existence of a

complex analytic connection. By construction, the classa(E,
◦
∇E) is exactly the obstruction

to the existence of a basic connection for(E,
◦
∇E).

In Sections 3 and 4, the resolution(A.1) is implicitly used with respect to the pull-back
fiber bundlep̂ : Z → M̂, the fiberwise derivative∇r

E and its restriction tôpΣ : ZΣ → Σ.
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